教育背景
2007.9-2011.6 南京农业大学农学院 农学 农学学士
2011.9-2017.6 南京农业大学资环学院 土壤学 硕博连读
2015.9-2016.9 丹麦奥胡斯大学 农业生态系 联合培养博士生
工作履历
2017.7 - 至今,
,资源环境学院,首聘副教授
学术兼职
1. 学术期刊《土壤学报》青年编委,2024.1-2025.12.
2. 学术期刊《土壤通报》青年编委,2022.1-2023.12.
3. 长期担任相关科研领域Agriculture Ecosystems & Environment, Journal of Cleaner Production,Geoderma等国际学术期刊等审稿人。
研究领域
农田土壤碳氮循环与管理、集约化农田系统温室气体减排以及土壤地力提升与修复
奖励与荣誉
1. 农业大学庆祝建党100周年优秀共产党员。
2. 2018-2020年度 “优秀班主任”。
3. 2019本科课堂教学十佳教师。
4. 2019-2020学年“青年教师教学优秀奖”,二等奖。
5. 2020年广东省大学生在行动环保科普行动优秀指导老师。
6. 2022年“三育人”—教书育人先进个人
7. 2020-2022年度 “十佳班主任”。
8. 2023年“七一”表彰优秀党支部书记。主持项目
科研项目:
1. 国家自然科学基金-青年基金项目:华南地区菜地N2O排放及其对生物质炭陈化过程的响应机制,主持,2019.1-2021.12,结题
2. 广州市基础研究计划基础与应用基础研究-青年科技人员项目:微塑料污染对华南赤红壤菜地N2O排放路径的影响及其微生物驱动机制,主持,2022.1.1-2023.12.31,在研
3. 技术服务:肇庆市高要区第三次土壤普查项目,主持,2023.9.28-2025.12.30,在研
4. 技术服务:广东省高州市第三次全国土壤普查试点县项目(外业采样调查)-采购包1,主持,2022.7.28-2022.8.31,在研
5. 技术服务:土壤类型现场辨识与培训,主持,2022.1.15-2022.12.31
6. 国家自然科学基金-面上项目:华南土壤铁锰结核的铁、硅同位素特征及其土壤发生意义,参与(排名第二),2022.9.7-2026.12.31,在研
7. 广东省自然科学基金-面上项目:施氮水平调控玉米/大豆间作系统土壤磷转化的微生物过程研究,参与(排名第二),2021-12.31-2024.12.31,在研
8. 技术服务:广东省高州市第三次全国土壤普查试点县项目(外业采样调查)-采购包2,参与(排名第二),2022.7.28-2022.8.31,在研
9. 技术服务:广东土壤类型名称校核及第三次全国土壤普查工作分类(暂行),参与(排名第二),2022.9.29-2022.12.31,在研
10.技术服务:广东省第三次全国土壤普查省级样点初步校核服务,参与(排名第二),2022.9.29-2022.12.31,在研
11.技术服务:广东省高州市第三次全国土壤普查试点县项目(成果汇总与编制),参与(排名第二),2022.11.22-2023.2.28,在研
教改项目:
1. 通识教育类一流课程(金课)—《矿物资源与宝石鉴赏》,2023.7-2028.6,主持,在研
2. 课程思政示范课程—《土壤学》,2023.1-2027.12,主持,在研
3. 教学质量工程:“《土壤学》全英课程建设”,2022.1-2023.12,主持,在研
4. 百个专任教师党支部课程思政精品示范课程,土壤学,2021.7-2023.7,主持,结题(良好)。
5. 教改项目:“基于云课堂的《矿物资源与宝石鉴赏》混合式教学模式研究”,2020.7-2022.7,主持,结题。
6. 广东省一流课程—《土壤学》,2024.1.1-2028.12.31,参与,在研
教学质量工程:《土壤学》在线课程建设,2022.1-2023.12,参与,在研。
学术成果
一、发表论文:
1. Liu Y, Shi M, Chen Z, Tang Z, Tan J, Tian J, Elsgaard L, Lu Y*, Li B*. (2023) Nonlinear effects of biochar on greenhouse gas emissions and soil microbial community composition under intensive vegetable production in South China. Applied Soil Ecology, 189, 104975.
2. Tang X, Liu H, Qin H, Zhao J, Wang H, Li B*, Lu Y*. Organic/inorganic phosphorus partition and transformation in long‑term paddy cultivation in the Pearl River Delta, China. (2023) Scientific Reports, 13, 11122.
3. Tang X, Hamoud Y, Shaghaleh H, Zhao J, Wang H, Wang J, Zhao T, Li B, Lu Y. (2023) Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China. Agronomy, 13,1869.
4. Tang X, Qiu J, Xu Y, Li J, Chen J, Li B*, Lu Y* (2022).Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion, CATENA, 218,106543.
5. Chen H, Rosinger C, Blagodatsky S, Reichel R, Li B, Kumar A, Rothardt S, Luo J, Brüggemann N, Kage H, Bonkowski M (2023). Straw amendment and nitrification inhibitor controlling N losses and immobilization in a soil cooling-warming experiment, Science of The Total Environment, 870, 162007.
6. Tang X, Hu J, Lu Y, Qiu J, Dong Y, Li B (2022). Soil C, N and P stocks and stoichiometry as related to land use types and erosion conditions in lateritic red soil region, south China. CATENA, 210, 105888.
7. Yang B, Zhang T, Zhang M, Li B* (2022). Reactive nitrogen releases and nitrogen footprint during intensive vegetable production affected by partial human manure substitution. Environmental Science and Pollution Research,29, 19572–19582.
8. Li B, Huang W, Elsgaard L, Yang B, Li Z, Yang H, Lu, Y*. (2020). Optimal biochar amendment rate reduced the yield-scaled N2O emissions from Ultisols in an intensive vegetable field in South China. Science of The Total Environment, 138161.
9. Yang B, Wei X, Wang H, Li J, Zheng X, Zhang C, Li B*. (2020) D. magna in Combination with M. aquaticum Inhibited the Bacterioplankton in Eutrophic Water. Sustainability, 2020, 12, 9548
10. Yang X, Zhu, K, Jia, X, Li B, Fan, C. (2020) Spatial heterogeneous granulation enhance soil nitrogen supply potential via regulating dissolved organic nitrogen. Science of The Total Environment, 746, 141235.
11. Yang B, Ma Y, Zhang C, Jia Y, Li B*, Zheng, X. (2019). Cleaner production technologies increased economic benefits and greenhouse gas intensity in an Eco-Rice system in China. Sustainability, 11(24), 7090.
12. Yang B, Gao Y, Zhang C, Zheng X, Li B*. (2020). Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China. Environmental Science and Pollution Research, 27(1), 391-398.
13. Li B, Zhou J, Lu Y, Xiong Z* (2019). Field-aged biochar reduces the greenhouse gas balance in a degraded vegetable field treated by reductive soil disinfestation. Environmental Science and Pollution Research, 26(11), 10609-10620.
14. Zhang M, Guo SL, Li B* (2019). Impact of different nitrogen horizontal placements on greenhouse gas exchange in an apple orchard. CLEAN-Soil, Air, Water, 47(4), 1800417.
15. Wu Z, Zhang X, Dong Y, Li B, Xiong Z* (2019). Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis. Agricultural and Forest Meteorology, 278 (2019) 107625
16. Zhou J, Li B, Xia L, Fan C, Xiong Z* (2019). Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. Journal of Cleaner Production, 225, 984e994.
17. Chen H, Zhou J, Li B, Xiong Z* (2019).Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: A three year field study. Atmospheric Environment 206, 247–257.
18. Sun L, Ma Y, Li B, Xiao C, Xiong Z* (2018). Nitrogen fertilizer in combination with an ameliorant mitigated yield-scaled greenhouse gas emissions from a coastal saline rice field in southeastern China. Environmental Science and Pollution Research, 25(16), 1-13.
19. Li B, Bi ZC, Xiong, ZQ* (2017). Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China. GCB Bioenergy, 9, 400-413. (IF=6.151)
20. Li B, Fan CH, Zhang H, Chen ZZ, Sun LY, Xiong ZQ* (2015). Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment, 100, 10-19. (IF=3.459)
21. Li B, Fan CH, Xiong ZQ*, Li QL, Zhang M (2015) The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences, 12(6), 2003-2017. (IF=3.700)
22. Zhang M, Li B, Xiong ZQ* (2016) Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study. Atmospheric Environment, 145:92-103. (co-first author)
23. Fan C, Li B, Xiong ZQ* (2017) Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. Science of The Total Environment, 2017, 612: 480-489.
24. Fan C, Chen H, Li B, Xiong ZQ*. (2017). Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences, 14(11), 1-27.
25. Zhou Z, Xu X, Bi Z, Li L, Li B, Xiong ZQ* (2016). Soil concentration profiles and diffusion and emission of nitrous oxide influenced by the application of biochar in a rice-wheat annual rotation system. Environmental Science and Pollution Research, 1-13.
26. Zhang M, Fan CH, Li QL, Li B, Zhu YY, Xiong, ZQ* (2015) A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agriculture, Ecosystems & Environment, 201, 43-50.
27. Jia JX, Li B, Chen ZZ, Xiong ZQ*. 2012. Effects of biochar application on vegetable production and emissions of N2O and CH4.Soil Science and Plant Nutrition, 1-7, iFirst. (IF=0.989)
28. Sun LY, Li B, Ma YC, Wang JY, Xiong ZQ*. 2012. Year-Round Atmospheric Wet and Dry Deposition of Nitrogen and Phosphorus on Water and Land Surfaces in Nanjing, China. Water Environment Research, Volume 85, Number 6. (IF=0.659)
1. 刘一戈, 杨安琪, 陈舒欣, 牛英奕, 卢瑛, 李博* (2023). 微塑料对土壤N2O排放及氮素转化的影响进展. 环境科学, 45(5), 588-596.
2. 刘一戈, 胡家帅, 王朝, 彭子倩, 郝珖存, 卢瑛, 李博* (2022). 不同温度条件下生物质炭陈化对华南集约化菜地土壤反硝化过程的影响. 植物营养与肥料学报, 28(9), 11.
3. 李博, 卢瑛, 胡家帅 2020. 土壤标本在《土壤学》实践课程创新中的应用. 大众科技, 22 (256), 12.
4. 李博, 卢瑛, 熊正琴*, 2018. 施用生物质炭对集约化菜地土壤肥力质量的影响. 土壤学报, 55(06):51-63.
5. 李博, 李巧玲, 范长华, 孙丽英, 熊正琴*, 2014. 施用生物炭与硝化抑制剂对菜地综合温室效应的影响. 应用生态学报, 25(9), 2651-2657.
6. 李博, 张曼, 熊正琴*, 2014. 施用氮肥与生物炭对菜地净综合温室效应的影响. 中国科技论文, 9(9), 1057-1062.
7. 王超, 邱竞驰, 李建华, 卢瑛*, 李博,唐贤,胡家帅 (2021). 香蕉秆及其生物炭对双季水稻土团聚体及碳库管理的影响. 农业环境科学学报..1-13.
8. 王超, 董玉清, 卢瑛*, 李博, 唐贤, 邱竞驰,胡家帅 (2021). 粤北低山林地改建梯田对土壤碳、氮、磷及其化学计量特征的影响. 应用生态学报, 32(07), 2440-2448.
9. 唐贤, 黄伟濠, 卢瑛*, 李博, 王超,董玉清 (2021). 广东省赤红壤区土壤团聚体有机碳和铁氧化物特征及稳定性. 水土保持学报, 35(02), 200-209.
10. 张波, 王超, 田海山, 李博, 卢瑛* (2021). 粤北低山坡地营造梯田对土壤磷组分及有效性的影响. 广东农业科学, 48(07), 74-83.
11. 王超, 熊凡, 卢瑛*, 李博, 唐贤, 董玉清 (2021). 利用方式对珠江三角洲耕层土壤团聚体分布及碳氮磷化学计量特征的影响. 农业资源与环境学报, 38(3): 494-501.
12. 陈勇, 邹献中, 卢瑛*, 黄伟濠, 贾重建, 李博, 陈丽君, 阳洋 (2020). 磁力搅拌法改进土壤阳离子交换量测定的研究. 土壤学报, 57(2):7.
13. 黄伟濠, 秦海龙, 卢瑛*, 李博, 唐贤, 王超等(2020). 香蕉茎秆及其生物炭对珠江三角洲土壤团聚体特征的影响. 中国生态农业学报(中英文), 28(3), 413-420.
14. 秦海龙, 付旋旋, 卢瑛*, 韦翔华, 李博, 贾重建(2019). 广西猫儿山不同海拔土壤碳氮磷生态化学计量特征. 应用生态学报, 30(3), 711-717.
15. 陈浩, 李博, 熊正琴(2017). 减氮及硝化抑制剂对菜地氧化亚氮排放的影响. 土壤学报, 54(4):938-947.
16. 董玉兵, 吴震, 李博, 等(2017). 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响. 植物营养与肥料学报, 2017, 23(5):1258-1267.
17. 李露, 周自强, 潘晓健, 李博,熊正琴*, 2015. 氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响. 植物营养与肥料学报, 21(5), 1095-1103.
三、出版著作:
1. 《中国土系志· 广西卷》,科学出版社,2020年,参编
2. 《农业行业甲基溴淘汰行动报告》,中国农业出版社,2020年,参编
寄语学生
纸上得来终觉浅,绝知此事要躬行