李发强

发布者:生命科学学院发布时间:2018-08-09浏览次数:8910


  李发强教授    性别:男

  所属单位: 生命科学学院细胞与发育生物学系

  Email:fqli@scau.edu.cn

  办公室: 生命科学学院北-609

  




教育经历

2001/09-2008/02,美国纽约城市大学研究生院大学中心(CUNY-Graduate School and University Center),哲学博士,生物化学专业

1998/09-2001/07,中山大学生命科学学院,理学硕士,遗传学专业

1994/09-1998/07,中山大学生命科学学院,理学学士,微生物学专业

 


科研与学术工作经历

2015/10至今, ,生命科学学院,教授;

2014/01-2015/09,美国威斯康星大学麦迪逊分校,遗传系,助理研究员;

2009/01-2013/12,美国威斯康星大学麦迪逊分校,遗传系,博士后;

 


研究领域

1. 主要以拟南芥为材料,通过遗传学、细胞生物学及多维组学解析植物细胞自噬的功能和调控机制;

2. 以玉米为材料,重点研究细胞自噬在产量、品质和逆境适应性等重要农艺性状形成中的生物学功能;

3. 改造细胞自噬衔接蛋白,研发适用于植物细胞的靶向降解技术。

 


科研项目

1. 国家自然科学基金面上项目,拟南芥ABA受体通过选择性细胞自噬降解的分子机制研究,2020/01-2023/12,在研,主持。

2. 国家自然科学基金面上项目,细胞自噬在玉米胚乳发育过程中的作用及调控机制的研究,2018/01-2021/12,结题,主持。

3. 广东省自然科学基金项目,拟南芥抗真菌毒素脱氧雪腐镰刀菌烯醇相关基因的鉴定与功能分析,2021/01-2023/12,在研,主持。

4. 中山大学有害生物控制与资源利用国家重点实验室开放课题,2021/01-2023/12,在研,主持。

5. 广东省自然科学基金项目,ATG8互作蛋白FYVE2a/b调控植物细胞自噬的分子机制研究,2018/05-2021/04,结题,参加。

6. 丁颖人才重点培养对象项目,2016始,在研,主持。

7. 高层次引进人才科研启动项目,2015/10始,在研,主持。

 


发表论文

1. Luo N, Shang D, Tang Z, Mai J, Huang X, Tao LZ, Liu L, Gao C, Qian Y, Xie Q*, Li F* (2023). Engineered AIM-based selective autophagy to degrade proteins and organelles in planta. New Phytol. 237(2):684-697. doi: 10.1111/nph.18557. (*Co-corresponding author)

2. 黄晓,邓桂玲,李发强* (2022) 基于细胞自噬的靶向降解技术及在植物研究中的应用前景, 学报43(6): 97-106.

3. Zheng C, Yu Y, Deng G, Li H, Li F* (2022). Network and Evolutionary Analysis Reveals Candidate Genes of Membrane Trafficking Involved in Maize Seed Development and Immune Response. Front Plant Sci. 4, 13:883961.

4. Bao Y*, Gao C*, Avin-Wittenberg T*, Zhou J*, Li F* (2022). Editorial: Molecular Perspectives for Plant Autophagy Regulation. Front Plant Sci. 13, 967916 (*Co-corresponding author).

5. Zheng P, Zheng C, Otegui MS*, and Li F* (2022). Endomembrane mediated trafficking of seed storage proteins: from Arabidopsis to cereal crops. J. Exp. Bot. 73, 1312-1326 (*Co-corresponding author).

6. Kim JH, Lee HN, Huang X, Jung H, Otegui MS, Li F*, and Chung T* (2022). FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. Plant Cell. 34, 351-373 (*Co-corresponding author).

7. Xiao Z, Yang C, Liu C, Yang L, Yang S, Zhou J, Li F, Jiang L, Xiao S, Gao C*, Shen WJ* (2020). SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. Integr Plant Biol. 62:1399-1417.

8. Yang C, Luo M, Zhuang X, Li F, Gao C* (2020). Transcriptional and epigenetic regulation of autophagy in plants. Trends Genet. 36:676-688.

9. McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra RD* (2020). Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in Maize. Plant Cell. 32:2699-2724.

10. Yang C, Shen W, Yang L, Sun Y, Li X, Lai M, Wei J, Wang C, Xu Y, Li F, Liang S, Yang C, Zhong S, Luo M, Gao C* (2020). HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation. Mol Plant. 13:515-531.

11. Huang X, Zheng C, Liu F, Yang C, Zheng P, Lu X, Tian J, Chung T, Otegui MS, Xiao S, Gao C, Vierstra RD*, and Li F* (2019). Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell. 31(12): 2973-2995, DOI: https://doi.org/10.1105/tpc.19.00066. (*Co-corresponding author, this article was evaluated by Faculty Opinions with a good rating.)

12. Gou W, Li X, Guo S, Liu Y, Li F, and Xie Q* (2019). Autophagy in plant: a new orchestrator in the regulation of the phytohormones homeostasis. Int. J. Mol. Sci. 20(12), 2900.

13. Liu F, Marshall RS, and Li F* (2018). Understanding and exploiting the roles of autophagy in plants through multi-omics approaches. Plant Sci. 274, 146-152.

14. McLoughlin F, Augustine RC, Marshall RS, Li F, Kirkpatrick, L.D., Otegui, MS, and Vierstra, RD* (2018). Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nat. Plants 4, 1056-1070.

15. Qi H, Xia FN, Xie LJ, Yu LJ, Chen QF, Zhuang XH, Wang Q, Li F, Jiang L, Xie Q, and Xiao S* (2017). TRAF-family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis. Plant Cell. 29:890-911.

16. Chen L, Li F*, and Xiao S* (2017). Analysis of plant autophagy. Methods Mol Biol 1662, 267-280. (*Co-corresponding author)

17. 黄晓, 李发强* (2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862.

18. Klionsky DJ*, and multiple authors including Li F (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.

19. Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, and Vierstra RD* (2015). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389-1408.

20. Marshall RS, Li F, Gemperline DC, Book AJ, and Vierstra RD* (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053-1066.

21. Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, and Otegui MS* (2015). The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell. 27:391-402

22. Li F, Chung T, and Vierstra RD* (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell 26, 788-807.

23. Li F, and Vierstra RD* (2014). Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10, 1466-1467.

24. Klionsky DJ*, and multiple authors including Li F (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544.

25. Li F, and Vierstra RD* (2012a). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 17, 526-537.

26. Li F, and Vierstra RD* (2012b). Regulator and substrate: dual roles for the ATG1-ATG13 kinase complex during autophagic recycling in Arabidopsis. Autophagy 8, 982-984.

27. Suttangkakul A#, Li F#, Chung T, and Vierstra RD* (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779. (#Co-first author)

28. Chen Y#, Li F#, and Wurtzel ET* (2010). Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol. 153, 66-79. (#Co-first author)

29. Li F, Tsfadia O, and Wurtzel ET* (2009). The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav. 4, 208-211.

30. Li F, Vallabhaneni R, Yu J, Rocheford T, and Wurtzel ET* (2008b). The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 147, 1334-1346.

31. Li F, Vallabhaneni R, and Wurtzel ET* (2008a). PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol. 146, 1333-1345.

32. Li F, Murillo C, and Wurtzel ET* (2007). Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol. 144, 1181-1189.

33. Gallagher CE, Matthews PD, Li F, and Wurtzel ET* (2004). Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135, 1776-1783.

 


教学活动

1. 承担《分子生物学》、《细胞生物学》等本科课程。

2. 指导本科生获得2021iGEM全球总决赛金奖。




Baidu
map